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Abstract
Smartphone location data are often treated as objective and self-evident—but it is neither. This article opens 
the black box of how location is constructed on the phone and in the cloud, arguing that these processes are 
foundational to digital geography and central to how its infrastructures take shape. Drawing on an original 
experiment conducted in Kingston, Ontario and Baltimore, Maryland, we reverse-engineer and document the 
different methods of producing location data in Android smartphones. In doing so, we reveal three intertwined, 
overlapping, and contested geospatial narratives: raw GNSS location data, Google’s computed location 
data, and the human narrative of embodied experiences. We analyze the frictions and contradictions among 
these narratives to demonstrate how location data are not simply measured, but actively produced through 
assemblages of surveillance, infrastructural power, and capitalist extraction. Against dominant portrayals of 
location as a neutral technical fact, our findings show that Google’s location services depend on off-phone 
processing, structured by opaque systems designed for control and profit. We call for a critical reorientation 
in how digital geographers engage with location technologies—not as passive tools, but as politically charged 
systems that mediate and monetize everyday life.
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“Intellectually, [urban location data] is a great challenging problem. But what about commercially—is this 
important? The answer is a resounding Yes!”

Dr. Frank van Diggelen (2021), Principal Engineer at Google
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In February 2020, we began a collaboration that brought together scholars from surveillance studies, 
computer science, and geography to focus on a fine-grained, but important question: how do smart-
phone-based technologies understand and model space, and for what purposes?

While in the popular imagination, and even in some scholarship, this is a relatively straightforward 
question: phones determine fixed locations based on connections between three or more satellites in 
a process called trilateration. In reality, the process is much more complex. As described by Google 
engineer, Dr. Frank van Diggelen (2021) for Inside GNSS, creating the discrete locations presented on 
a smartphone relies on factors such as the time delay of a satellite signal, the width of the satellite 
wave itself, atmospheric weather, the position of the planet, and the movement of the phone through 
space—all of which is complicated in urban environments where signals are blocked, or even altered, 
as they interact with “urban canyons” made up of signal reflecting buildings. The complexity of cal-
culating an accurate location for a smartphone as it moves through urban space is so computationally 
and energy intensive that much of it occurs within Google servers, rather than within the phone itself.

In this respect, what seems simple—the dot on a smartphone screen that signifies a location—is the 
result of a complex calculation of heterogeneous elements that include spatial, temporal, and algorith-
mic elements across multiple devices. The goal of this multidisciplinary project, which we called “Big 
Data Exposed,” has been to defetishize1 the production of location data through tracking the process 
of the creation of a discrete location. To do this, we start from the very beginnings within the core 
processes of an Android smartphone and its interactions with applications, positioning satellites, and 
Google servers. As described in further detail below, this process involved the creation of a new 
Android app: a data parser, that extracts the location data from an Android smartphone at multiple 
stages. This process also depended on modifying an existing application—an open-source navigation 
app like Google Maps—to ensure that it contained location detection, processing, and data sharing 
algorithms known to be used by third parties to monitor how phone users move in real time. These 
applications were then put into use through experiments conducted in Kingston, Ontario and 
Baltimore, Maryland.

The process of unpacking how smartphone location data are produced has important findings for 
the philosophies and methods of geography as a whole, and of particular interest to the subfields of 
digital geography and critical GIS. We sought to collaborate with computer scientists and surveillance 
studies scholars, building on a methodological approaches that may be of interest to geographers (Ash 
et al., 2024; De, 2022; Fields et al., 2020; van Es and de Lange, 2020; Wilmott, 2020; Wilson, 2018). 
More specifically, revealing the particularities of how space is understood and modeled through 
smartphone-based technologies helps us understand how the production of location data is shaped by, 
and enmeshed with, projects of surveillance and profit-making. As we explore throughout this article, 
studying how space is modeled on smartphones—in combination with the complex chains of political 
economic factors that facilitate this production—highlights why Google and other technology firms 
are so focused on location accuracy and how both location and movement generate the construction 
of geospatial narratives by private actors.

The results of our experiment thus contribute to scholarship on the political economy of digital 
spatial technologies and knowledge production (Attoh et  al., 2019; Bates et  al., 2019; Cuppini 
et al., 2022; Hodson et al., 2020; Jefferson, 2018; Langley and Leyshon, 2017; Leszczynski, 2019; 
Stehlin and Payne, 2022; Thatcher et al., 2016; Wilmott, 2020) as well as to the methods used in 
digital geography and critical GIS (Ash et  al., 2024). Most notably, this collaboration between 
computer and social scientists allowed us to identify how the production of “location” exceeds the 
smartphone itself, with companies such as Google and Uber acting as key nodes shaping how 
smartphone-based technologies understand and model space through calculations done on their 
servers. A key goal of our methodology is in revealing how space is differentially modeled by vari-
ous techniques, each creating different geospatial narratives about location: a raw location story 
(produced through the smartphone’s interactions with GNSS satellites), Google’s story (produced 
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through the co-opting of raw location data, combined with outsourced, third-party measurement 
points provided by cell towers and Wi-Fi routers), and the user’s embodied experience. The story 
that gets told has considerable implications for (1) the phone user’s authority over their location, 
and (2) how the phone user is represented not only as a traveler, but as a consumer, as a laborer, and 
as a private vs public human being.

The rest of the article proceeds as follows. First, we present a literature review of digital geogra-
phies and critical GIS with a close focus on issues of surveillance and the technical difficulties of 
generating location data in urban environments. Second, we outline the methodology of our study and 
highlight its interdisciplinary nature. Third, we provide an analysis of the results of the study. Finally, 
we conclude with a discussion of how our close attention to the production of location data may be of 
use to digital geographers in understanding the infrastructure that underpins the political economy of 
location.

Understanding location data

In 1989, engineers from Massachusetts Institute of Technology and the Electric Power Research 
Institute sought to improve energy usage awareness and efficiency. They developed and patented a 
metering device which monitored household electricity usage. The “Non-Intrusive Appliance Monitor 
Apparatus” recorded analog voltage and current signals which were then converted into a digital for-
mat and centrally processed off-site to identify individual appliances and the energy consumed by 
those appliances (Hart, 1989). The monitor could be placed outside the house and no in-home sensors 
were required for it to function properly.

In the same year, the lead engineer of the patent wrote the feature article in IEEE Technology and 
Society Magazine warning that the apparatus could also be used in surveillance with significant poten-
tial for abuse. As he put it, “[A] typical energy consumer would not understand the wealth of detail 
that can be extracted from the signals continually being transmitted out of the home over the power 
lines” (Hart, 1989: 15). In field results, the monitor was able to identify and differentiate between dif-
ferent light fixtures, and any number of other household appliances and devices, providing rich data 
about the household and the behaviors of household members. “[I]t is easy to tell when someone is in 
the shower, for example, based on the use of a water pump, water heater, bathroom light, and/or hair 
dryer” (Hart, 1989: 14). Comparing the monitor to a device used to tap a phone line, Hart suggested 
several surveillance scenarios including monitoring the activities of suspected criminals, monitoring 
or identifying political opponents, identifying vacancy status for break-ins or theft, or spying on for-
eign embassies. Hart also identified situations where such monitoring could be profitable; notably, the 
“junk mail” scenario, where “utility companies could sell advertisers and salespeople mailing lists of 
consumers lacking assorted consumer appliances” (Hart, 1989: 14).

More than 30 years later, the concerns of Hart are increasingly prescient. Similar to the non-intru-
sive monitors, smartphones collect data about individuals that are centrally processed both off-site 
and within the phone. These data are used to understand and model space as well as to analyze the 
behaviors of individuals. For users, these technologies enable the navigation of unfamiliar places as 
well as shape their spatial understandings of the places they occupy. Indeed, digital geographers have 
highlighted how applications like Google Maps influence how individuals understand their local 
geographies through providing contextual data as they move through the city and pick both routes and 
destinations (Dalton, 2018; Thatcher, 2013; Wilmott, 2016). However, as critical scholarship estab-
lishes, the role these data play goes well beyond its utility to its end users, as it also facilitates the 
production of datasets which are themselves valuable as a commodity (Beauvisage and Mellet, 2020). 
Furthermore, the representations of movement and location produce information useful for various 
surveillance infrastructures, from the carceral to consumer modeling (Kitchin, 2013).
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In this section we explore, in turn, (1) the intersections of surveillance and location in digital geog-
raphies, (2) the place of location data in digital political economies, and (3) the particular challenges 
of calculating location in urban environments. Through doing so, we establish how our experiment 
illuminating the precise mechanisms through which spatial data are produced inside and outside of 
smartphones using both computational and geographic methods strengthens geographers’ understand-
ing of how (urban) digital geographies are produced and shaped through decisions made along the 
chain of production. As we will argue through our empirical case, such decisions shape the construc-
tion of movement and location narratives that result from the spatial data produced via smartphones.

Location data and surveillance

A key pillar of the literature on location data both inside and outside of geography has been on its role 
within surveillance infrastructures (Klauser, 2013; Leszczynski, 2015). If surveillance can be broadly 
understood as a set of related activities (such as looking, watching, staring, examining, etc.) in a tech-
nologically and digitally mediated context, those activities increasingly capture data for the purposes 
of monitoring (Amoore, 2014; Marx, 2015; Zuboff, 2019). Surveillance is instructive for thinking 
through the “why” of location data precisely because surveillance is a power mechanism designed to 
make that which is not normally seen more visible for the purposes of monitoring, judging, and regu-
lating behavior (Foucault, 1977). It is through this scholarship that we theorize smartphone location 
tracking architecture and their data outputs not merely as a function of entertainment for the user but 
as a function of surveillance conducted by private and public sector actors who have vested interests 
in rendering human movement visible and legible.

Throughout the past two decades, multiple key events have transpired that demonstrate Haggerty 
and Ericson’s (2000: 607–608) concept of surveillance-as-assemblage which posits that the practice 
of surveillance consists of a set of diverse, interconnected technologies and organizations that gain 
coherence by working in concert to monitor, control, and influence. Seldom do governments conduct 
their own surveillance on populations without leveraging and linking together otherwise disparate 
data collection and monitoring systems. For example, the Snowden Revelations revealed the extent to 
which the US government’s National Security Agency tapped into existing communication networks 
and networked devices to conduct surveillance in the name of conducting the “war on terror” (Bauman 
et al., 2014). By tracking how users move and by monitoring the content of their digital communica-
tions, the NSA surveilled domestic and foreign populations allegedly in the name of national security. 
While corporate actors use telecommunications networks to monitor users for potentially different 
reasons and justifications (i.e. analyzing consumer behavior for sales, advertising, and marketing 
purposes), surveillance is invariably conducted along the same rationale: to render that what cannot 
be seen visible so that it can be monitored, judged, regulated, evaluated, and turned into profit.

Surveillance is thus what gives rise to location data narratives and storytelling power. By amal-
gamating location data together, public and private sector actors authorize themselves to construct 
truth claims such as, for example, explanations of potential consumer interest or users-as-security-risk 
in ways that cannot be self-evidently negotiated nor accessed by the subjects of these stories them-
selves (Mahmoudi et al., 2024). For example, in January 2020, a Florida resident named Zachary 
McCoy received an email from Google indicating that his local police department requested his loca-
tion data history from his smartphone. Earlier that month, McCoy had ridden his bicycle past a home 
that was burglarized. The police department identified McCoy as a potential suspect of interest given 
the collection of location data available to them and their interpretation of its meaning, McCoy’s loca-
tion was used to create the police’s narrative about what McCoy had been doing. Had the police 
department generated a fair and accurate narrative, they would have recognized that McCoy had 
never actually stopped nor dismounted from his bicycle (Bhuiyan, 2023). Instead, the police assumed 
he committed the crime because McCoy rode his bicycle past the victim’s home around the same time 
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that the crime took place. As McCoy’s case illustrates, location and movement within the context of 
surveillance is thus more than a spot on a map, they are instead both produced and understood within 
a complex assemblage.

Tracking where citizens are, where they are heading, how long they take to arrive, how long they 
stay, and the routes they take along the way are also often motivated by the intersections of surveil-
lance and profit-making. Location data in smartphones have been increasingly collected, interpreted, 
framed, and sold as stories that are interwoven with racialized logics of surveillance (Jefferson, 2018). 
In 2021, the data brokerage firm Predicio made global headlines after hoarding location data from 
smartphones containing the Muslim prayer app called Salaat First. Those data were sold to a US gov-
ernment contractor working with US Immigration and Customs Enforcement (ICE) and the Federal 
Bureau of Investigation (FBI) (Cox, 2021). Those data were not merely surrendered to the govern-
ment. They were collected from a smartphone app, commodified, and sold for profit. The Predicio 
example is thus a salient one for not only thinking through the ways in which surveillance facilitates 
the ability for privileged actors and entities to generate narratives about location data. That is, surveil-
lance by tech companies empowers them to narrate and commodify smartphone location data.

Location data and digital political economy

Location data’s focus on the movement of people is revealing of both the evolving architecture of 
smartphone surveillance and the importance of social contexts, like urban boundaries, within which 
location data are understood. As hinted at in the Predicio case, smartphone architecture has evolved 
considerably not merely in the name of state surveillance, but as a central component of a multi-bil-
lion dollar global data marketplace with significant implications for urban spaces. Political economic 
factors play an important role in the growing surveillance of users’ location and movement.

For technology companies, an accurate description of where a phone is located is important 
mechanically (e.g. knowing where a pick-up point for ridesharing is located) and for profitability (e.g. 
building accurate customer profiles). Both processes, however, require assumptions about what urban 
spaces are used for and by whom. As urban geographers have described, urban space is not a neutral 
category but ridden with a variety of associations that can produce both status and stigma (Jefferson, 
2018; Kallin and Slater, 2014; Otero et  al., 2022). Location data produced by smartphones exist 
within these dynamics, as digital information gathered as an individual moves through space draws 
on these associations in building profiles of smartphone users, their shopping habits, and their overall 
behaviors (Mahmoudi et al., 2024; Shelton et al., 2015). Location data thus become aggregated into a 
key aspect of consumer profiles that data companies then go on to sell.

In response to the COVID-19 pandemic, mobile location data from smartphones also became an 
important research tool for contact tracing and public health more broadly. Despite narratives of the 
positive public health applications of using these data, Human Rights Watch (2020) cautioned,

that the use of incomplete and discriminatory datasets can misdirect public health efforts in ways that endanger 
the rights of the poorest and most vulnerable people. For example, stricter enforcement of social distancing 
measures in low-income counties could unduly penalize front line workers, people struggling to find shelter, 
or unemployed people traveling to food banks or welfare agencies because their movements may appear 
abnormal or in violation of social distancing norms when in fact they have to be more mobile to meet basic 
needs.

Indeed, during the pandemic, numerous geospatial data companies reached out to the authors to sell 
location data to glean insights from mobile location data. Such uses of data present two important 
problems. First, the companies’ analysis and the surveilled data itself are presented as truth, rather 
than representations, agnostic of the calls by scholars to unpack the assumptions that go into creating 
and using data (see, for example, Dalton et al., 2016; Iliadis and Russo, 2016; Kitchin and Lauriault, 
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2014; Schuurman, 2006). Second, this reflects a broader trend where surveillance of users is com-
modified for surveillance advertising (Edelman, 2020). By tracking and profiling individuals’ move-
ments, these data are transformed into a data commodity that can be sold to advertisers under the 
premise that the data represent the best possible method for targeted advertising (Bodle, 2016; Elvy, 
2018; Mahmoudi and Levenda, 2016; Thatcher, 2017; West, 2019). This commodification process 
underscores the economic incentives driving extensive location data collection and raises critical 
questions about privacy and the ethical use of personal data.

The challenge of location data in urban environments

As revealed through industry publications, the production of local data within urban environments 
specifically is essential to the political economy of digital geographies. Uber, for instance, requires 
precise location data in order to create the smooth operations of matching rider and driver in a seam-
less manner at the moment of pick up (Iland et al., 2018). As Attoh et al. (2019) also argue, this type 
of location data is then used to further accumulation strategies through the production of big data sets 
that can train new technologies (such as self-driving cars or machine learning) or which are sold to 
other actors. The “urban” is not merely where the processes of datafication and data extraction take 
place; rather, the city itself serves as a necessary precondition for both the collection of data and the 
generation of its value (Mahmoudi et al., 2024). From the combination of location data with its urban 
context, social interactions and consumptive behaviors can be inferred or enriched from other sources, 
providing vital sources of information for marketers to turn into targeted advertisements. These, in 
turn, produce new urban geographies of consumption and shape our understandings of space (Dalton, 
2018; Mahmoudi and Levenda, 2016).

As described above, urban spaces represent an important site for location data that is funda-
mental to the profit proposition of technology companies and surveillance infrastructures. Yet at 
the same time, urban spaces are a challenge for modeling that the smartphone industry is perpetu-
ally trying to improve (as noted in the opening quote to this article). As Uber engineers argue on 
their company blog:

Accurate estimation of rider and driver location is a crucial requirement for fulfilling Uber’s mission of 
providing transportation as reliable as running water, everywhere, for everyone. .  . To meet our mission, the 
Sensing, Intelligence, and Research team is working on a variety of approaches for improving location with 
creative use of sensors and computation on mobile devices, coupled with the computational power of our 
server infrastructure (Iland et al., 2018).

In the view of industry actors then, the production of location data in urban environments is particu-
larly problematic (Iland et al., 2018; Van Diggelen, 2021). This is because the development of GNSS 
in its early stages assumed direct line of sight with a satellite. Urban spaces, often characterized by 
tall buildings made with reflective materials, either block line of sight signals or reflect them, creating 
a challenging environment for modeling. This can be compensated by tracking a phone’s movement 
from an area where there is a clean line-of-sight, however, that approach requires that users start their 
journey in an optimal location. The production of location in urban environments is therefore never 
clean, but as Uber engineers highlight, requires workarounds like the “creative” use of sensors and 
computing power that exists outside of the smartphone itself (Iland et al., 2018).

Both Google and Uber’s solution to this challenge include the creation of models of cities which 
includes building heights (Iland et al., 2018; Van Diggelen, 2021) and the known location of public 
Wi-Fi access points (Google Fused Location Provider, 2024). With the use of machine learning algo-
rithms, Google, for example, spatially models how relative signal strength between satellites, signal 
strength of known public Wi-Fi access points, and GNSS signal bouncing can reveal the precise 
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location of a user. In these algorithms it is assumed that where there is a strong signal strength from a 
satellite there is a clear line-of-sight, and when there is a weak signal strength, a building is interfer-
ing. Through doing so, the likelihood of a smartphone being on one side of a street can be modeled 
(GNSS bouncing) and predicted based on how the interference of line-of-sight to satellites by build-
ings of various heights (as determined using 3-dimensional (3D) models) is affecting signal strength 
(Iland et al., 2018; Van Diggelen, 2021).

Putting it all together: Thinking about location data

It is to the above literature on the digital geographies of surveillance, political economy, and urban 
space that our project contributes through the in-depth analysis of how smartphone location data 
are produced. While our intervention is primarily methodological, by going into the core processes 
of the construction of location within smartphones we hope to defetishize the production of loca-
tion data (that is, we aim to reveal the underlying social and economic processes that construct 
meaning behind data), reveal how location data are used in the construction of narratives useful for 
surveillance and profit-making assemblages, and discuss new methodological tools that may be 
helpful to digital geographers.

For example, the 3D modeling of cities to improve location data, a computation process, masks the 
underlying assumptions and biases inherent in how these data are used to construct narratives about 
location. By scrutinizing these algorithms, we can better understand how they influence our under-
standing of how people use space, a topic that will be examined in the discussion section below. This 
examination is crucial, as it reveals the tensions between raw GPS data, computationally enhanced 
data, and the real-world movements and behaviors of individuals and how these shape people’s under-
standings of urban space. In fact, recent developments, have highlighted how location, surveillance, 
and digital political economies are coming together through what Dayen (2024) calls “surveillance 
pricing,” where apps offering goods and services (e.g. McDonald’s app) gather data on users based on 
information like location and then use algorithms to create optimal prices that vary by consumer.

Yet, at the same time, digital geographers and other critical scholars have drawn on notions of 
embodiment to highlight that people’s unique experiences cannot fully be captured by such data pro-
files (Kinsley, 2014; Smith, 2016). Instead, the body and its sensations (or “sensate”) contains a mul-
titude of factors including the sensory experience and social associations the shape how we react as 
we move through space in ways that are difficult to represent but which nevertheless guide how we 
negotiate our way through sites and, as Middleton (2010: 583) puts it, assess the “atmosphere of a 
place” (see also Harrison, 2000; Kinsley, 2014; Smith, 2016). Crucially, embodied experience is not 
merely individual, but social and hierarchical: how one moves through space is also shaped by how 
one is received within it. Social hierarchies of race, gender, ability, and class condition feelings of 
comfort, threat, and belonging, such that marginalized groups often encounter hostility, surveillance, 
or fear in ways that dominant spatial data cannot capture (Gieseking, 2020; Middleton, 2010). Such 
varied embodied experiences can even result in different awareness of what data one produces and 
strategies to limit one’s data footprint, as what Smith (2016) calls the “embodiment-surveillance” 
nexus means that racialized groups (among others) are aware of how location data can be used against 
them and adjust their actions accordingly.

Combining these strands from the literature, and the ways corporations are combining surveillance 
and profit-making in new ways, raises important questions for digital geography: how can we verify 
that the location data that corporations and governments extract and analyze are the same as what we 
see, as users? Furthermore, what does it mean to rely on extensive training data and sophisticated 
algorithms to generate what might be deemed the most accurate conclusions about location and the 
downstream uses to which location data contribute? Addressing these questions is inherently chal-
lenging for two reasons. First, addressing these questions requires our research team to open-up the 
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black box (Winner, 1993) of location-driven surveillance to both determine how location data are 
created and extracted as well as what location data embody. Second, coming to terms with the data, 
algorithms, and architecture inside the black box must also wrestle with the obfuscated nature of loca-
tion data and the asymmetrical access to both its inner workings and to knowledge about how such 
data are used (Ball, 2019; Foster and McChesney, 2014).

Methods

This project adopts an interdisciplinary approach, leveraging insights from computer science, sociol-
ogy, and geography to examine the production of location data via smartphones. Inspired by the 
method of datawalking (van Es and de Lange, 2020) our work is grounded in an embodied, situated, 
and generative practice. This approach not only allows us to reflect on our own experiences as we 
move through space, but to also capture and analyze the location data transmitted by an app and to 
document the data retention and transmission processes (whether to its own cloud-based storage or to 
third parties). We can then explore the tangible discrepancies between our own narrative of move-
ment, location data visible to users, and the operations occurring “below the surface.” By integrating 
datawalking, our methodological aim seeks to connect embodied experiences with the underlying 
data infrastructures, addressing challenges related to data invisibility, context loss, and access.

This project began in 2019 under the name of A Day in the Life of Metadata (ADITLOM)—a 
multidisciplinary collaboration led by Dr. Tommy Cooke that brought together computer engineers 
and analytics developers together with sociologists, political scientists, geographers, and legal studies 
scholars to investigate precisely what location-based surveillance data looked like within smart-
phones. The premise of the project was that by “seeing” location surveillance data in a smartphone 
would enable investigators to understand their creation, transformation, and movement both within 
and beyond the smartphone itself. By working with the Centre for Advanced Computing at Queen’s 
University, the ADITLOM team designed a smartphone software intervention that would track when 
raw location data were generated, where those data were sent throughout an Android-based smart-
phone operating system, what apps received those data, and in what format those data were then sent 
out of the phone to third parties. Shortly after ADITLOM’s launch, a sub-project called “Big Data 
Exposed” was created along with Dr. Dan Cohen and Dr. David Lyonto test these methods in the field. 
Using ADITLOM’s primary software method, two additional, distinct software interventions were 
designed, which worked in concert with one another.

Technical framework for location data collection and analysis

The first intervention consisted of modifying an open-source mapping app called OsmAnd2 to force 
it to commit its location data requests, receival, and transmission activities to a script stored on the 
smartphone (based on the phone’s own location data). These data then served as the primary source 
for our analysis. OsmAnd is an open-source3 mapping and navigation app, like Google Maps. The 
open-source nature of the app was very important to our team because it allowed us to detect and 
monitor the creation of location data and movement activity. Data from the phone was sent to the app, 
passed through it, received modification by the app’s algorithms, and then left the app. The open-
source design of OsmAnd also allowed us to include two additional sets of location data detection and 
monitoring mechanisms (described below).

To enable raw location data collection, we made a key modification to the OsmAnd app. First, we 
used the GnssMeasurement() function from the Android Application Programming Interface (API) to 
access raw satellite signal data, and the OnNmeaMessageListener() to detect when new measurements 
were recorded. These functions allowed us to observe and record raw GNSS output directly on the 
device. Second, we integrated GeoSpark’s (which became Roam) Software Development Kit (SDK), 
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which collects location data by transmitting signals off the device for processing using Google’s Fused 
Location services. These services combine GNSS data with information from nearby Wi-Fi access 
points, cell towers, etc.

Broadly speaking, both APIs and SDKs are methods of integrating third-party functionality. An 
API enables communication between one piece of software with another service, providing consistent 
and controlled access to features or data. An SDK includes code libraries that can be embedded into 
our app. This enables background processing or data collection. While the distinction between API 
and SDK is technical, the key here for the purposes of our experiment is understanding that they both 
allow data to be shared beyond the device. This dynamic raises concerns around surveillance. In the 
case of Predicio that we discussed earlier in the article, the company acquired mobile location data 
and sold it to a U.S. military contractor, which exemplifies how location data flow from consumer 
devices into opaque, obscure networks of data brokers and additional actors.

The purpose of the SDK in the context of our research was three-fold. First, it allowed Roam (for-
merly GeoSpark) to capture, transmit, store, and analyze any location data that passed through it. This 
is a standard method used by “location intelligence” firms, especially during the pandemic, to develop 
and sell location analytics services. For example, the French firm Predicio—unbeknownst to the app 
developer—extracted data from Muslim Americans as they traveled to mosques (Cox, 2021).

Second, the SDK’s location data processing is powered in part by Google’s Fused Location ser-
vices. This cloud-based system aggregates data from GPS, Wi-Fi, and cell towers, then applies algo-
rithmic smoothing to make the data more consistent. The specific workings of Fused Location are not 
disclosed, but the result is often a visually cleaner travel narrative—such as the straight lines seen in 
Google Maps—that may exclude anomalies or perceived errors. We intentionally included an SDK 
using Fused Location to observe how this black-box processing reshapes the raw GNSS data into 
more coherent, albeit altered, spatial histories.4

Third, by integrating an SDK reliant on Google’s Fused Location, we were able to construct a 
counter-surveillance vantage point. The SDK made it possible to observe how a third-party analytics 
company collects, transmits, and receives location data, and how Google’s smoothing returns affect 
the visibility of certain movements. This observation was critical to our research: it revealed how 
computational systems selectively erase or reshape location traces that appear erratic or deviant.

In summary, our software interventions allowed us to capture location data that the smartphone 
generated, passed to OsmAnd, or transmitted externally. This included all transformations that 
occurred through Google’s Fused Location services. We also developed a data parser tool that enabled 
us to read and organize these data into timestamped scripts for analysis and visualized through GIS.

Embodied experience and datawalking

Our technical framework reveals two distinct location data narratives unfolding within the smart-
phone, both of which are fundamentally different from our embodied experiences as we conducted 
our research. As we navigated designed routes in Baltimore and Kingston, we intentionally traveled 
through high and low traffic throughout both urban environments. Our intention in doing so was to 
collect location data across a wide range of socioeconomic spaces as well as geographical areas that 
differed in terms of technical architecture. This included dense urban cores with significant building 
interference where we suspected satellite and cellular signals would be interrupted by buildings, but 
which were rich with public Wi-Fi routers, and conversely, more open, less networked spaces with 
minimal infrastructure. Adding intentional diversity to our datawalks positioned us to hypothesize on 
how technical, embodied, and urban factors, often invisible in computational measurements, shaped 
the production of geospatial narration.

As we navigated these predetermined routes it is important to emphasize that context-driven 
decision making emerged as a factor in shaping our embodied experiences—that is, the actual, 
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physical walks that our teams took and not those represented in data points. As we highlight further 
in the Results section, we made decisions to walk under trees for shade or to pause briefly near 
landmarks. These decisions were dictated in real time and were often prompted in response to envi-
ronmental and sensory stimuli, such as heat, fatigue, and even at some points a desire for an acous-
tically quieter path. These choices, though intuitive to most any traveler, are non-linear and may 
vary according to an individual or group’s relative comfort in heat and/or desire for a sensory-rich 
or sensory-calm environment. As such, they are often at odds with the normative movement pat-
terns assumed by location processing inside and beyond our smartphones which focuses on gener-
alization rather than individualization. Datawalking, as described by van Es and de Lange (2020), 
embodies and situates practices that expose disconnections between lived experiences and digital 
representations. By sharing reflections on our datawalks below, we observe firsthand how digital 
processes often fail to capture the fluid, adaptive nature of human movement and cannot capture the 
embodied experiences which guide it.

The datawalk approach to analyzing and testing location data measurements is thus important 
because it reveals how digital systems prioritize and interpret certain pathways and behaviors over 
others. For example, computed narratives often default to predefined paths such as sidewalks and 
roads, while embodied experiences include spontaneous deviations based on sensory inputs like 
cutting across a section of grass rather than walking across an asphalt parking lot. These devia-
tions reveal how location narratives are shaped not only by technical factors like signal interfer-
ence or algorithmic smoothing but also the sociocultural, urban, and embodied contexts of 
mobility. Acts like pausing, seeking shade, or rerouting for convenience reflect the everyday, situ-
ated negotiations that shape mobility—subtleties that digital systems often flatten, oversimplify, 
or ignore altogether.

Moreover, integrating embodied experiences through datawalks offers a critical interrogation 
of the biases inherent in location data systems. Juxtaposing location measurements with lived 
experience allows us to identify the precise moments where computed representations signifi-
cantly diverge from reality—divergences that may vary according to social difference and how 
individuals are perceived as they move through space. These divergences are not innocuous. 
They are more than technical errors; they are symptoms of a broader tendency in digital systems 
to prioritize coherence and predictability—along with assumptions about bodies—over the com-
plexities of human decision-making. Human mobility reveals the assumptions embedded in loca-
tion tracking technologies, highlighting their implications for urban planning, surveillance, and 
everyday navigation.

Route selection

To best achieve our goals for the data walk routes in Baltimore, Maryland, and Kingston, Ontario, we 
designed a strategic approach to capture diverse socioeconomic and infrastructural contexts. Routes 
included popular vehicular travel paths, downtown pedestrian corridors, and, in Kingston, a univer-
sity campus. This selection ensured exposure to varied Wi-Fi router densities, cell tower coverage, 
and spatial characteristics critical for studying GNSS and digital connectivity.

In Kingston (see left portion of Figure 1), the route traversed the less dense urban core, a university 
campus with open spaces and institutional networks, and both high- and low-income neighborhoods. 
In Baltimore (see right portion of Figure 1), the route spanned from the city center to low-income 
areas with high vacancy rates, affluent waterfront zones, and established historic neighborhoods. By 
combining pedestrian and vehicular modes of travel in both cities, we examined the impact of velocity 
and travel mode on location data generation.
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This design captured a spectrum of urban density, spatial forms, and infrastructural conditions, 
ensuring robust, diverse datasets. It also accounted for technical variations in data construction and 
socio-spatial differences, minimizing the influence of location- or time-specific anomalies.

Project initiation

Our experiment involved using a mobile application to track movements in Kingston, Ontario, and 
Baltimore, Maryland. Collaborating with Dr. Dillon Mahmoudi, we investigated specific Application 
Programming Interface (API) methods commonly employed by Google Maps and similar navigation 
apps to collect, calculate, and transmit user location data. We focused on two types of location detec-
tion methods: one that uses GPS signals within the smartphone —the primary method for OsmAnd—
and another that generates algorithmically smoothed location estimates via Google’s servers, 
predominantly used by Roam. In essence, Roam operates within OsmAnd to produce alternate loca-
tion estimates by leveraging external computational processes, without altering OsmAnd’s internal 
reporting.

To analyze the data collected from both cities, we developed a Data Parsing desktop application 
that formatted location logs into Microsoft Excel Workbooks. These were imported into a Geographic 
Information System (GIS) for visualization and comparison of the location data from each walk. This 
analysis provided critical insights into how location data are generated and the methodological impli-
cations of combining independent and algorithmically augmented data sources, which we discuss in 
the results section.

Results

The parsed output from our desktop data parser app reports each single location recording in the for-
mat of a data “sentence.” Each data sentence represents a different measurement that is made availa-
ble to internal smartphone software and to external algorithms (i.e. Google Fused Location) to 
determine the device’s location (see Table 1). There are over 35 variables in each sentence, ranging 
from satellite identification numbers and satellite constellation types (i.e. Galileo vs GPS vs BeiDou 
et al.) to the time recorded in nanoseconds. The log produced three sheets or three different categories 
of location-based recordings: National Marine Electronic Association 0183 (NMEA), Global 
Navigation Satellite System (GNSS) Raw Measurements, and Location Objects. NMEA is a standard 
format of data (called a data string), which is produced by the GNSS chip. Both NMEA strings and 
GNSS Raw Measurements are used by smartphones and third parties to calculate the device’s loca-
tion. Location Objects are those which are produced after the smartphone uses algorithms to smooth 
raw datasets to display more consistent location representations and movement pathways thereof 
within an app such as Google Maps (see Table 2).

Our analysis draws an important distinction between how OsmAnd and Roam produce location 
data. OsmAnd calculates location data using raw GNSS signals captured and processed entirely on 
the smartphone. Roam, on the other hand, transmits raw measurements to cloud-based servers where 
the data are combined with external sources such as Wi-Fi networks, cell towers, etc. Processed esti-
mates are then returned to the device as computed locations. While this method is designed to improve 
consistency and precision in urban environments, it also introduces additional layers of abstraction. 

Table 1.  Examples of parser data sentences.

-0.067131 61132.68435 -67.979666 23.975476 -1349374033384430000 36 18 501216000000 0 true true true true true true false 0.00 16 0 -9223372036854770000 1600312448 0 0 41.60 3 0 336.84 0.86 76516529414060 7 0 49359 18 0 false true false false false
-0.05205 154.021211 -65.352778 28.871518 -1349374033384430000 36 18 502056000000 0 true true true true true true false 0.00 16 0 -9223372036854770000 1575420032 0 0 34.50 6 0 391.87 0.45 65735357368843 14 0 23567 33 0 false true false false false
-0.577623 108.851964 -62.300981 42.389043 -1349374033384430000 36 18 503056000000 0 true true true true true true false 116.76 27 0 -9223372036854770000 1599750016 0 0 32.30 3 0 210.55 0.25 76518372019974 17 0 49359 2 0 false true false false false
-0.328938 5036.731251 -13.355288 36.02374 -1349374033384280000 37 18 509632000000 0 true true true true true true false 0.00 16 0 -9223372036854770000 1599750016 0 0 28.40 3 0 221.62 0.83 76524947872992 276 0 49359 2 0 false true false false false
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Recognizing and understanding this difference is crucial because it shapes the kinds of location nar-
ratives each method generates.

While our method collected a wealth of data, found within GNSS data sentences for example, the 
goal of the method is to draw attention and awareness to the different kinds of location narratives that 
these data propagate. The location narratives, or stories about how we move, are constructed by the 
data and the processes responsible for creating, formatting, sharing, and transmitting them. As we 
discuss in more detail below, they are not always coherent narratives nor are they accurate representa-
tions of embodied experiences. Raw GPS, though granular, is prone to inaccuracies (Thin et  al., 
2016). While they are “smoothed” by Google’s Fused Location processes, those inaccuracies are 
interpreted and recast as new data points that introduce their own biases and assumptions, for exam-
ple, about whether or not our research team walked down the middle of a road or on a sidewalk. Our 
findings intend to defetishize and unmask these processes and data types to reveal how location data 
and the narratives they generate and share about travelers are not neutral or objective.

Table 2 represents the most important data to our analysis: Location Objects. This is for two rea-
sons. First, the NMEA and GNSS datasets are “raw,” and they tend to be inaccurate as such. Since the 
mid-2000s when location-tracking capabilities arrived on smartphones, Google has gradually devel-
oped a location calculating and smoothing architecture and installed them into the operating systems 
of Android devices. That architecture is referred to in the caption of Table 2 as the Location API index. 
They are, in essence, algorithms that accept raw location measurements and attempt to “smooth” them 
out so that they can be read in a more user-friendly fashion by apps that request them—and so that 
they can be displayed more cleanly, consistently, and coherently to the user. Simply, Location Objects 
are the data behind a pin drop or a travel path in a navigation app.

Of particular interest in the Location Objects data sentences (as depicted in Table 2) are two sen-
tence types: Roam and OsmAnd. In the Method section of this article we shared that OsmAnd was the 
open-source navigation app, which we chose for this experiment. We outlined that OsmAnd calcu-
lates device location independently of third-party processing by using the Location APIs in the 
Android operating system. As such, OsmAnd is represented in the Location Objects dataset as its own 
data sentences that are calculated entirely within the phone itself.

The second data sentence, Roam (formerly GeoSpark), is constituted in a more complex way. The 
raw measurements that Roam’s SDK collects are sent out of the phone to its own cloud-based servers 
for storage and to Google Play’s servers where Google’s Fused Location services exist. Google Fused 
Location uses cloud-based location calculating and smoothing algorithms that are more complex than 
the native Location APIs on the smartphone itself. As we indicated above, these cloud-based algo-
rithms also benefit from modeling and calculating location accuracy by drawing upon existing net-
works and datapoints (i.e. public IoT devices such as Wi-Fi routers etc.; Google Android Developers, 
2024b). This includes using publicly broadcasted Wi-Fi information from cell towers and routers in 
stores to assist in trilateration and thus smoothing and enhancing a device’s accuracy (Bonnington, 
2018), and it is from these external processes that Roam’s data calculation benefits. It is these two data 
sentences—OsmAnd and Roam—that constitute the location narratives discussion below.

Viewing these data in GIS, we see the paths our teams followed across Kingston, Ontario and 
Baltimore, Maryland. We identify three distinct types of deviations evident in the data walks depicted 
on the maps. Analyzing the mapped data and contrasting it with our direct experiences can be benefi-
cial for elucidating the methods by which location data are reported and processed. In the 

Table 1.  Examples of parser data sentences.

-0.067131 61132.68435 -67.979666 23.975476 -1349374033384430000 36 18 501216000000 0 true true true true true true false 0.00 16 0 -9223372036854770000 1600312448 0 0 41.60 3 0 336.84 0.86 76516529414060 7 0 49359 18 0 false true false false false
-0.05205 154.021211 -65.352778 28.871518 -1349374033384430000 36 18 502056000000 0 true true true true true true false 0.00 16 0 -9223372036854770000 1575420032 0 0 34.50 6 0 391.87 0.45 65735357368843 14 0 23567 33 0 false true false false false
-0.577623 108.851964 -62.300981 42.389043 -1349374033384430000 36 18 503056000000 0 true true true true true true false 116.76 27 0 -9223372036854770000 1599750016 0 0 32.30 3 0 210.55 0.25 76518372019974 17 0 49359 2 0 false true false false false
-0.328938 5036.731251 -13.355288 36.02374 -1349374033384280000 37 18 509632000000 0 true true true true true true false 0.00 16 0 -9223372036854770000 1599750016 0 0 28.40 3 0 221.62 0.83 76524947872992 276 0 49359 2 0 false true false false false
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Table 2.  Examples of Osmand and Geospark data sentences.

Osmand 9.7423 -30.8338 0.0000 39.2835 -76.5864 gps 0 1665339318000 true true false true true
GeoSpark 9.1890 -29.6000 68.8439 39.2835 -76.5864 fused 0 1665339326000 true true true true true
Osmand 8.3970 -31.5387 0.0000 39.2835 -76.5864 gps 0 1665339327000 true true false true true
GeoSpark 8.7930 -29.6000 67.9861 39.2835 -76.5864 fused 0 1665339327000 true true true true true

accompanying figures, we illustrate the reported locations for OsmAnd (shown in orange) and Roam 
(shown in purple), along with their reported accuracies. The accuracy values, ranging from 3 to 18, 
indicate the radius in meters from the reported location to the actual position of the device.5

Accuracy deviation

Walking along sidewalks in both cities produced results where OsmAnd (orange) data reported high 
accuracy (represented by smaller dot sizes). Roam (purple), however, received this raw information 
but the additional computation performed by Roam introduced new accuracy issues (represented by 
the larger dots signaling a lower value for accuracy).

In some instances, the routes themselves were nearly identical between the two methods of calcu-
lating location, yet the Roam data reported resolution issues. While in Baltimore’s Fells Point (see left 
portion of Figure 2), for example, walking along the water with a good view of GPS satellites, our 
path resembled what OsmAnd reported. Roam occasionally matches the accuracy reporting of 
OsmAnd but produces points with lower accuracy as it snapped us to the path we were already walk-
ing, sometimes reducing the typical GPS accuracy of 3 to 9 m. In the context of geospatial applica-
tions, the difference between 3 and 9 m accuracy can significantly impact location-based services and 
decision-making processes. For example, services like Uber depend on precise positioning to deter-
mine which side of the street a passenger is on, and a 9 m error can lead to incorrect assumptions about 
a user’s exact location. This highlights how even seemingly minor inaccuracies can propagate through 
systems, affecting their functionality and user experience.

Figure 5 captures the Baltimore team walking across the bridge in a straight line, where neither 
Roam nor OsmAnd was able to capture our path but where OsmAnd reported higher accuracy than 
Roam. Kingston’s downtown area provided similar results: high accuracy from OsmAnd and some-
times the computed or fused data introduces lower accuracy points again up to 9 m. These discrepan-
cies highlight the black-boxed nature of Google’s fused location, where the reasons for this perceived 
lack of accuracy may be related to factors such as 3D modeling or connections to Wi-Fi routers but 
which are hidden through the proprietary algorithm through which Google produces location.

There are two examples of accuracy deviation in Kingston. Understanding the deviation requires 
context that was critical to our team’s embodied experience. The daytime temperatures exceeded 35° 
Celsius on the day of our experiment. Under direct sunlight (see Figure 3) for most of the day with 
minimal cloud cover while walking on concrete sidewalks and traversing asphalt crosswalks, staying 
cool and well-hydrated was a priority to the team. We often paused under trees to intentionally avoid 
direct sunlight.

At times throughout the campus and downtown core walks, our team would intentionally cut 
across grassy areas with tree coverage for a break. Our heat-avoiding behavior is rooted in our embod-
ied experiences moving through the city and as such represents a notable deviation from the other 
linear, predictable paths often narrated by the privileged, computational model seen below. As van Es 
and de Lange (2020) described, there is importance in the embodied, situated practice of making vis-
ible the infrastructures that are often invisibly shaping digital geographies, especially as these can 
vary significantly across social differences (Middleton, 2010; Smith, 2016). The true path of our 
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embodied experience is often different from the other two location data narratives generated by our 
devices and may have deviated in an entirely different manner depending on who was undertaking the 
walk. While the phone tracked a single path, our path was more complex as we traveled as a research 
group. In Figure 4, we have designated a portion of our embodied experience path as we intentionally 
navigated toward trees. The former is indicated by a light green line, while the latter is represented in 
dark green triangles. There are times when one of the smartphone-based location narratives reflects 
these decisions. Other times neither of our device-based data-driven narratives captured this decision 
making whatsoever.

Referencing the path of our embodied experience allows us to interrogate the accuracy of location 
data narratives. The decision to walk under trees for shade introduces subtle changes in trajectory that 
raw GPS data might capture but smoothed computational narratives failed to represent accurately. 
These deviations reveal gaps where algorithms prioritize coherence over precision, erasing the adap-
tive, non-linear ways our team navigated their urban surroundings. Such moments emphasize the 
limitations of computational systems in reliably modeling human mobility and embodied experi-
ences, as they often misinterpret or overwrite the nuanced adjustments individuals make in response 
to environmental and social conditions.

Path deviation

As stated earlier, the hot weather prompted us to deviate from typical routes in both Kingston and 
Baltimore. We crossed the street or cut across the grass to enjoy the shade of buildings or trees. These 
deviations led to paths that differed from what one might expect a typical route to take. Such move-
ments introduced differences in how the two location tracking methods, OsmAnd and Roam, placed 
our location data.

The OsmAnd trackers were notably less accurate when we followed predictable routes, such as 
sidewalks. There were instances where the location data placed us inside buildings while reporting 
high accuracy and then incorrectly placed us across the street while reporting low accuracy. In these 
scenarios, Roam was able to more accurately place us on the sidewalk and outside of buildings. 
However, Roam showed less flexibility when our routes diverged from expected paths. For example, 
in Kingston, moments when we cut across the grass to seek shade or move more quickly were more 
accurately modeled by OsmAnd compared to Roam. This suggests that while Roam may handle typi-
cal urban movements well, OsmAnd performs better in capturing non-traditional paths and devia-
tions, highlighting the importance of context in evaluating the accuracy and usability of location data 
systems.

Another example can be seen in Figure 4. Near the end of the team’s trip around downtown 
Kingston we stopped at the residence of one of the team members to hydrate and for a restroom 
break. The residence is circled in red. To the immediate northwest of the building, we can observe 
the device residing outside the residence before traveling inside the home. The device exits the 
home from the southwest corner before proceeding west-southwest across a road and then proceed-
ing directly south. The cluster of data points to the northwest represents where our team resided 
while team members took turns going inside to refresh themselves. However, the device used in the 
experiment did not enter the house—despite the data points placing us inside, otherwise. Moreover, 
none of the team members exited the house from the southwest. Everyone waited outside on the 
driveway before some team members departed by car while the rest proceeded south for the remain-
der of the trip. The algorithms used to generate location narratives both contain the same discrepan-
cies and errors. They represent false transitions and positional inaccuracies. The example 
underscores a challenge in interpreting micro-movements and the difficulty in reconciling raw and 
even smoothed data with human actions.
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Missing data

In rare instances, OsmAnd’s location was correct but reported low accuracy. This anomaly highlights 
the complexity of GPS-based tracking, where the raw data might be accurate, but the system’s confi-
dence in that data is low. For example, in our map of Baltimore (see Figure 5), a segment of travel 
along the I-83 freeway showed OsmAnd indicating low accuracy through large circles, despite cor-
rectly capturing the route. During this same period, Roam did not report any spatial data, resulting in 
an absence of location points. This is likely because the raw GNSS signals required for computation 
were unavailable. For example, if not enough state satellites were visible, OnNmeaMessageListener() 
may not have been triggered, leaving Roam’s SDK with no data to process. Similarly, while walking 
on a sidewalk OsmAnd began to report low accuracy while Roam again failed to output any location 
data. These gaps reveal the technical limitations of cloud-dependent systems in constrained condi-
tions. In addition, they highlight the fragility of computational services in the real-world. As impor-
tantly, they underscore a critical issue in location data systems: the potential for accurate data to be 
disregarded or underreported due to algorithmic confidence thresholds. These thresholds play an 
important role in balancing usability and reliability because low-confidence data could overwhelm 
applications or lead to errors in safety-critical contexts such as self-driving cars. Filtering these data 
can also discard valuable information. Due to the ways in which proprietary services tend to prioritize 
polished, high-confidence outputs to maintain trust, their process can introduce biases and limit trans-
parency. We are particularly concerned about what these thresholds mean in larger volume over larger 
periods of time. For example, how are travel stories told and sold about refugee and human migration 
patterns when location data are missing? What interpretive liberties are taken to fill in those gaps in 
order to construct a story about how someone or a group has moved?

Similarly, while walking on a sidewalk in a gridded street layout, OsmAnd began to report low 
accuracy, while Roam again failed to provide any location data. This occurred despite there being no 
sudden change in our mode of transportation or direction. The failure of Roam to capture any data in 
these instances raises important questions about the robustness and reliability of computational loca-
tion services under certain conditions. These gaps in data reporting suggest that both the physical 
environment and the specific algorithmic approaches of different services can impact the accuracy 
and completeness of location data. These findings emphasize the need for critical scrutiny of how 
location data are processed and reported, particularly in contexts where precise and reliable data are 
essential.

Discussion: Constructing geolocation, constructing geospatial 
narratives

This study’s exploration of location data production through smartphones reveals critical insights into 
the complex interplay between raw GPS data, computational refinements, and embodied experiences. 
Our findings indicate variations in data accuracy and representation between the OsmAnd and Roam 
methodologies, particularly under different environmental conditions and user behaviors. These dif-
ferences underscore the need for a deeper understanding of the mechanisms behind location data 
generation and its implications for digital geographies.

One of the most striking observations from our research is the contrast between the high accuracy 
reported by OsmAnd and the computational adjustments made by Roam, which often introduced new 
inaccuracies as the computational adjustments sought to correct travel that did not conform to, for 
example, the expected behavior of walking on sidewalks or pedestrian paths. This discrepancy raises 
important questions about the reliability and transparency of computational methods used to refine 
location data. Roam’s approach, which relies on extensive training data to produce what it considers 
the most likely conclusions, exemplifies the challenges of interpreting and trusting black-box 
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algorithms in location data services. This raises questions for digital geography and critical GIS in 
terms of the underlying data geographers are concerned with. If the urban geospatial narratives gener-
ated through how applications like Google Maps shape movement and how residents choose destina-
tions (Dalton, 2018; Thatcher, 2013), what does it mean when locations themselves are shaped by 
decisions made by companies like Google? Or when that data are then used to feed into transportation 
planning and new technologies like self-driving cars (Attoh et al., 2019).

The contrast between OsmAnd’s and Roam’s location and movement are significant when consid-
ering how they aggregate over time. Though the inaccuracies and pathway differences between 
OsmAnd and Roam are minor in comparison to one another as represented in our figures, particularly 
in the context of our two data walk experiments, it is important to consider what these inaccuracies 
and differences mean as they compound over longer distances, repeated trips, and in historical data-
bases used to sell narratives to third parties. As Kitchin (2013) notes, the more data that are collected 
over time, the greater potential for noise within them. That is, as more data are collected, more errors, 
redundancies, and irrelevant data increase within them. Each deviation in a dataset, no matter how 
minor, contributes a distorted narrative of movement and space over time. In our analysis, the micro-
deviations we observe between the OsmAnd and Roam travel paths result in slightly different results 
in terms of our exact location. OsmAnd, relying solely on raw GNSS data, reports locations that were 
off from our embodied experience by a few meters. At times, OsmAnd placed us inside of buildings 
that we never entered. Roam, on the other hand, attempted to smooth inaccuracies through Google’s 
Fused Location services. While the neater linearity visually represented in Roam’s travel history 
appears more consistent at first glance, the smoothing process itself introduces distortions and erases 
travel behaviors. As is evident from the narratives, the smoothing process itself introduces distortions, 
erasing non-conforming travel behaviors such as cutting across parks or crossing streets to avoid 
direct sunlight, particularly when it prioritizes the normal distribution of expected sidewalk usage 
over the reality of spontaneous pedestrian choices.

The notion of data friction (Madsen et al., 2023)—the imperfections that arise as data from different 
sources is processed and reprocessed—reminds us that each time location data are smoothed or cor-
rected, it moves further away from a traveler’s embodied experience, removing critical factors such as 
the sensory experiences which shape the affective path-finding and the ways that varying levels of com-
fort in space along lines of social difference when constructing the story of a person’s movement. As this 
process continues over time, it introduces ongoing tension between accuracy and representation; the 
goal of a company creating an accurate dataset is thus always elusive precisely because the very process 
of refining data introduces biases and assumptions about traveler consumption, preferences, and ideals. 
Within the location analytics or “location intelligence” industry, this issue recurs frequently because the 
industry itself is in its infancy, experiencing rapid growth especially since the pandemic. Companies in 
this industry, like Google and Roam, are still developing algorithms and models used to interpret and 
even predict location. The industry relies on coherence in its own storytelling and narrative capacities 
about human behavior when they are sold to clients like advertisers, urban planners, and law enforce-
ment agencies. In our results, this is particularly self-evident.

How Roam handled deviations from well-defined paths—such as cutting across a lawn on Queen’s 
University campus to pass under a tree to avoid direct sunlight on a hot day—Roam failed to capture 
these movements accurately. Instead, it defaulted to assumptions about where we “should” have been, 
exemplifying Kitchin’s observation on the tendencies of noise emerging in a growing dataset. New 
noise is introduced as perceivably inadmissible or unwelcome data (or, what which deviates from a 
preferred narrative) are erased and replaced in the pursuit of a cleaner narrative. The long-term effect 
of this process is significant. As more data are collected, smoothed, and processed over time, the noise 
in the dataset grows, leading to inaccuracies that are not merely technical issues. They have real-
world implications on how industries and actors understand and socialize norms and expectations of 
consumer behavior, urban design, and even location surveillance.
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Moreover, situating this problem within the context of all three narratives contextualizes these 
kinds of issues. Each app that generates location narratives does it differently. In the case of OsmAnd, 
we see that it uses methods from Google’s Location API and performs calculations about the user’s 
position through processes of translating raw GNSS data. There are regimes of algorithmic interpreta-
tion already taking place here well before any external, cloud-based processing. For example, con-
sider Google’s Geocoder method, which converts geographical measurements (i.e. from GNSS raw 
measurements) into physical mailing addresses, and vice versa (Google Android Developers, 
Geocoder class, 2024a). The process utilizes location-based filters or bounding boxes to prioritize 
results (Google Maps Platform, 2024). When a user requests their location in an app that uses this 
API’s method, the API may favor certain results that are biased toward popular or expected loca-
tions—even if those locations are not the most geographically relevant. Another potential bias can be 
seen within the way in which Geocoder displays results based on frequency of use or commercial 
priorities, meaning that known business or locations may appear more prominently even if they are 
not the most relevant to the user’s experience. These biases distort how a space is represented as its 
privileges certain data types and data connections over others, thus further complexifying already 
complex narratives built from location data. More simply summarized, the computational processes 
involved in generating data narratives—whether OsmAnd or Roam—there is always a degree or 
interpretation and representation taking place that will always be different than a user’s embodied 
experience. As this happens more and more over time, the more significant these differences become 
in terms of how they are translated and sold as stories about how we travel, how we consume, and how 
we interact with the urban spaces around us.

Furthermore, our study highlights the limitations of current location data methodologies in captur-
ing the nuances of human movement in ways that further builds out our understanding of the produc-
tion of digital geographies (Ash et  al., 2016; Gregory and Maldonado, 2020; Huang et  al., 2021; 
Leszczynski and Kong, 2023). The deviations from typical routes taken to avoid direct sunlight, for 
instance, revealed significant gaps in the ability of both OsmAnd and Roam to accurately model these 
behaviors. OsmAnd, while more accurate in unpredictable routes, sometimes incorrectly placed loca-
tions within buildings, whereas Roam struggled to adapt to unexpected paths, favoring predictable 
sidewalk routes. These findings suggest that existing location data systems may inadequately reflect 
the true complexity of urban mobility, particularly in diverse and dynamic environments. Given that 
these data are the building blocks for the production of digital understandings of urban space, with 
attendant feedback loops into how humans understand their spaces, where location data are accurate 
and inaccurate is important to understanding how space is modeled and then used. More concerning, 
as in the case of Zachary McCoy biking past the burglary site, that these locations can then be taken 
as truth within surveillance assemblages raises further concerns within the context of the carceral log-
ics of urban space (Haggerty and Ericson, 2000; Jefferson, 2018).

In addition to these observations, the use of location data to understand urban space therefore 
raises three broad sets of critical questions about the underlying assumptions and implications of such 
practices. The first set of questions relates to how location data inform understandings of cities and 
their residents, potentially creating a feedback mechanism which reproduces the city in the image of 
the computed location data. For example, by privileging certain types of movements and spaces—
such as well-trodden sidewalks over spontaneous detours—these systems may reinforce existing 
power dynamics and spatial inequalities. Thus, we ask, how do the computational methodologies 
employed by services like Roam and OsmAnd shape our understanding of urban environments (cf. 
Huang et al., 2021)? To what extent do these data-driven narratives reflect or distort the embodied 
experiences of urban inhabitants (cf. Dalton et al., 2019)? How do they shape the further uses of these 
data in surveillance and profit-making assemblages (c.f. Ash et al., 2016; Dayen, 2024)?

The second set of questions are predicated on location data-driven surveillance as a preoccupation 
that renders that which is invisible visible and that which is illegible legible—for purposes of 
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judgment, categorization, and storytelling. We then must inquire into precisely what exactly is being 
made visible and legible (cf. Mahmoudi et al., 2022; Wilmott, 2019). What are the fundamental dif-
ferences in the embodied experience of travel and the competing, non-negotiable, and often inaccu-
rate stories told by the data (cf. Wilmott, 2016; Wilmott, 2020)? And how are those narratives shared, 
sold, or traded among corporations and governments (cf. Beauvisage and Mellet, 2020; Birch et al., 
2021), and what impact might those differences have upon, for example, a user’s locational privacy 
(cf. Fisher and Dobson, 2003)? What does it mean to enjoy relative degrees of obscurity or ambiguity 
around one’s location as a means of mitigating a company’s or government’s desire to collect and 
analyze more accurate, more often, and more granular resolutions?

The third set of questions relates to the knowledge generated from data-driven surveillance and 
resulting competing truth claims, what we call in this article the geospatial narrative authority. The space 
for constructing narratives about movement and migration exists somewhere between the institutional 
pursuit of precise measurements and the inherently chaotic urban environment, where GPS satellite, 
wi-fi, and cellular signals are often disrupted by urban structures. This intermediate space, where stories 
are shaped, remains elusive and generally inaccessible—black boxed—to the average user, obscured by 
both technical complexities and institutional frameworks. What authority does the user have over the 
way their geospatial narratives are interpreted? Furthermore, the obscure content generated within these 
spaces must be recognized as truth claims about user location and movement: claims that are as much a 
reflection of measurable, scientific certainty as they are claims mired in error and ambiguity (cf. Wilmott, 
2016). How much noise is normalized within these spaces and narratives? What degree of noisy location 
data is acceptable by these institutions, or even hidden from one another? What recourse might civil 
society have in terms of correcting, amending, or renegotiating narrative inaccuracy and exaggeration 
before they generate damaging profiles or catalyze data harms?

In addition, the opacity of the algorithms and the proprietary nature of the data sources used by tech 
companies obscure the processes behind data refinement, potentially leading to biased or incomplete 
representations of urban space. This critical perspective invites us to scrutinize not only the accuracy of 
location data but also the broader socio-political contexts in which these data are produced and utilized, 
challenging us to consider who benefits from these technologies and who might be marginalized by 
them (cf. boyd and Crawford, 2012; Dalton et al., 2016; Elvy, 2018; Wilmott, 2016).

The implications of these findings are profound for both researchers and practitioners in the field 
of digital geographies. By critically examining the production and refinement of location data, this 
study opens up avenues for more transparent and accountable methodologies. It highlights the impor-
tance of not only scrutinizing the accuracy of location data but also understanding the underlying 
algorithms and data sources that shape these outputs. This transparency is crucial for developing more 
reliable and inclusive location data practices that better serve diverse urban populations and for digital 
geographers seeking to understand the building blocks upon which the process they study are built.

Conclusion: Profit and the loss of geospatial narrative authority

In March 2013, Google introduced the Fused Location Provider as part of the Google Play services, 
which aimed to enhance location accuracy (Wilhelm, 2013). In 2020, Google enhanced the Fused 
Location Provider to improve location accuracy in urban environments specifically via the introduc-
tion of 3D mapping aided corrections, which utilizes building models to adjust for signal reflections 
and obstructions (Android Developers Blog, 2020). These technologies are used by Roam allegedly 
improving upon the raw GPS data reported by phones (like that data reported by OsmAnd). Given the 
widespread and global use of Android phones, which represent over 70% of the worldwide smart-
phone marketplace as of March 2024 (Sherif, 2024), this study makes a significant and timely meth-
odological contribution by providing a nuanced understanding of how location data are produced and 
reproduced through smartphones. Our findings reveal three intertwined narratives: (1) the GPS 
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location data with its inherent flaws, (2) Google’s computed narrative, and (3) the human narrative of 
embodied experience. The interplay between these narratives underscores a tension, wherein each 
narrative depends on the context of “storytelling,” ultimately shaping our identity as travelers, con-
sumers, laborers, and residents.

The first narrative, the GPS location data (OsmAnd), represents the raw and initially compelling 
story of how smartphones determine and report user location through satellite trilateration. This nar-
rative was once seen as providing users with control over their movements by allowing them to turn 
off GPS tracking. The second narrative, Google’s computed location (Roam), illustrates how Google 
enhances and refines this data through additional sources such as local Wi-Fi routers and 3D models 
of cities, producing a more “precise” but less transparent story. This narrative is driven by commercial 
interests to sell location behavior, to advertise based on that behavior, and to optimize the information 
available to applications like Uber or in personalized pricing strategies like those used by McDonald’s 
(Dayen, 2024). It reflects an on-going and continuous desire for ever-finer spatial and temporal meas-
urements of users, transforming them into potential consumers. The third narrative, the human narra-
tive, encompasses the embodied experiences and personal movements of users, often the most 
authentic yet the most variable and hardest to capture in digital location data as the multitude of fac-
tors which shape how a body experiences space, and is received by that space, cannot be easily 
smoothed data. This narrative captures the everyday decisions, detours, and deviations from the 
“norm” made by individuals that are not fully captured by computational models.

The contest over geospatial narrative authority reveals that the embodied experience, often the most 
authentic representation of movement and place, is paradoxically the one with the least agency in the 
digital age. Initially, GPS data empowered smartphones to narrate the user’s journey, offering a sem-
blance of control to the user who could ostensibly stop tracking by turning off GPS. However, our 
research highlights two critical evolutions. First, Google’s location services have progressively under-
mined this autonomy. Despite users’ attempts to disable GPS, Google’s systems continue to collect 
location data, leveraging additional sources such as local Wi-Fi routers to enhance precision. Second, 
Google’s integration of various data points into a cohesive location narrative illustrates a move toward 
computed storytelling that works backward into how location is calculated. These evolutions reflect a 
broader capitalist and data-driven imperative for increasingly granular and frequent measurements of 
human movement and behavior (Ash et al., 2024; Barns, 2016; Thatcher et al., 2016). This narrative is 
neither purely human nor raw; it is a product of sophisticated computational processes designed to serve 
commercial interests and, while technologically advanced, is not neutral. Instead, it carries implicit 
biases and motivations shaped by the interests of those who control the data and the algorithms. Roam’s 
methodology involves producing location data conclusions that it deems most accurate, based on exten-
sive training data and sophisticated algorithms. However, this process lacks transparency, or is deliber-
ately obscured, raising critical questions about the implications of such data practices. What does it 
mean to open up the black box of location data for methodologies in digital geographies?

Opening the black box involves demystifying the computational processes and assumptions under-
lying location data production. This transparency is essential for several reasons. First, it allows 
researchers to critically assess the accuracy and biases of the data. Roam, like many advanced loca-
tion data services, relies on complex algorithms trained on vast datasets to refine and predict location 
information. Understanding how these algorithms function and the nature of the training data they use 
is crucial for evaluating the reliability and representativeness of the produced data (Benjamin, 2019; 
Ettlinger, 2022; O’Neil, 2016).

Moreover, by unpacking these methodologies, researchers can identify discrepancies between raw 
GPS data and the refined outputs provided by services like Roam. This process can reveal how certain 
movements and locations are prioritized or marginalized within the data. For example, algorithms 
may favor frequently traveled urban areas while underrepresenting less common paths—as demon-
strated in our results, where routes taken to avoid direct sunlight or follow less predictable trajectories 
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were inconsistently captured. What is not yet known, and which requires further investigation, is the 
ways in which territorial stigma, which often involves the racialization of space in urban contexts, 
may also feature into how data are produced and modeled Jefferson, 2018; Kallin and Slater, 2014; 
Otero et al., 2022). For instance, if users avoid a space due to racial prejudice, does this then become 
hardwired into how space is modeled? And how is this then translated into economic processes like 
surveillance pricing that varies by how corporations model user behavior (Dayen, 2024).

Opening up the black box also has significant implications for how geographers might intervene in 
the study of digital geographies. It supports a more participatory approach to location data production 
and analysis. By making methodologies transparent, researchers and communities can engage more 
critically with the data—questioning, challenging, and potentially reshaping how it is collected and 
used. This participatory approach aligns with the principles of critical GIS, which advocate for more 
inclusive and socially responsive geographic information systems as a means of working toward just 
and equitable futures (Elwood, 2022; Mahmoudi and Shelton, 2022).

Furthermore, transparency in location data methodologies enhances accountability. As location 
data increasingly shape urban planning, policymaking, and commercial activity, it is vital that the 
processes generating these data are open to scrutiny. The widespread use of location data to monitor 
populations during the COVID-19 pandemic—often without consent—underscores the urgency of 
these concerns (Human Rights Watch, 2020). Methodological openness can help ensure that data-
driven decisions are made more fairly and equitably, reducing the risk of reproducing existing social 
and spatial inequalities.

In conclusion, the transformation from GPS-based data to a fused, computational narrative repre-
sents an important shift in how location data are produced, interpreted, and utilized. This study high-
lights the importance of critically examining the sources and methods of location data production, 
recognizing the inherent power dynamics and the implications for individual agency and privacy. As 
we navigate an increasingly data-driven world, we argue that it is imperative to remain vigilant about 
who controls these geospatial narrative authorities and to advocate for transparency and agency in the 
representation of our movements and identities. Opening the black box of location data is a crucial 
step toward advancing methodologies in digital geographies. It allows for a critical examination of the 
accuracy and biases inherent in location data production, fosters participatory engagement with data 
practices, and enhances accountability in data-driven decision-making. As this research project 
evolves, embracing transparency will be key to understanding and improving the complex interplay 
between location data and urban processes.
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Notes

1.	 We use the term defetishize in reference to the Marxian concept of commodity fetishism which highlights 
how commodities (such as location data) present commodities as disembodied objects of exchange, obscur-
ing the social relations needed to produce them (Marx, 1990[1867]).

2.	 The original app is available at https://osmand.net/
3.	 The term open-source refers to applications where the computational code and architecture of the app is 

visible and editable by anyone who wishes to modify the app.
4.	 While not explicitly advertised, Roam’s SDK (accessible at https://docs.roam.ai/android/quickstart) uses the 

FusedLocationProviderClient (see details at https://developers.google.com/android/reference/com/google/
android/gms/location/FusedLocationProviderClient) that is part of the Google Play services on Android.

5.	 While both OsmAnd and Roam report accuracy values, it is important to note that these values are calcu-
lated differently and may not be directly comparable. OsmAnd’s value reflects the radius of a bounding 
circle based on trilateration of GNSS signals while Roam’s value reflects a more complex calculation. A 
higher reported value for Roam does not necessarily indicate lower accuracy, but rather reflects differences 
in how the estimates are produced.
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